Skip to content

Frequency Models

CRML frequency models describe how often loss events occur for assets or risk components.


1. Poisson model

Mathematically:

N \sim \text{Poisson}(\lambda)

where:

  • N = number of events in a fixed period (e.g., 1 year)
  • \lambda > 0 = expected number of events per period

In CRML:

model:
  frequency:
    model: poisson
    parameters:
      lambda: 0.3

Runtime mapping (reference implementation):

from crml.frequency import sample_poisson_frequency

freq = sample_poisson_frequency({"lambda": 0.3}, size=n_assets)

2. Gamma–Poisson (Negative Binomial)

To model over-dispersion (variance > mean), CRML uses a Gamma–Poisson model:

\lambda \sim \text{Gamma}(\alpha, \beta), \quad N \mid \lambda \sim \text{Poisson}(\lambda)

Marginally, N follows a Negative Binomial distribution.

In CRML:

model:
  frequency:
    model: gamma_poisson
    parameters:
      alpha_base: 1.2
      beta_base: 1.5

Reference runtime:

from crml.frequency import sample_gamma_poisson_frequency

params = {"alpha": 1.2, "beta": 1.5}
freq = sample_gamma_poisson_frequency(params, size=n_assets)

3. Hierarchical Gamma–Poisson (QBER-style)

In QBER-like models, \alpha and \beta may themselves depend on asset-level features (e.g., criticality index CI):

\alpha_i = f_\alpha(\text{CI}_i), \quad \beta_i = f_\beta(\text{CI}_i)

The full hierarchical model (conceptually):

\begin{aligned} \lambda_i &\sim \text{Gamma}(\alpha_i, \beta_i) \\ N_i \mid \lambda_i &\sim \text{Poisson}(\lambda_i) \end{aligned}

CRML expresses only the base form:

model:
  frequency:
    model: hierarchical_gamma_poisson
    parameters:
      alpha_base: 0.8
      beta_base: 1.3

The reference runtime currently interprets this similarly to gamma_poisson but can be extended to use CI-dependent parameters.


4. Practical guidance

  • Use Poisson for simple, independent, low-variance event counts.
  • Use Gamma–Poisson when you observe fat-tailed or over-dispersed count data across assets.
  • Use hierarchical forms when you have entropy-based criticality indices or other asset-level features.